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A High Resolution and Bounded Convection Scheme

Seok Ki Choi*, Ho Yun Nam* and Mann Cho*
(Received August 28, /994)

A high resolution and bounded convection scheme is proposed for the simulation of steady

incompressible flows with finite volume method. The scheme is formulated on a nonuniform,

nonorthogonal grid so as to be applicable to the simulation of practical engineering problems.

The relative performance of the scheme is evaluated through applications to the test problems.

The results of numerical experiments show that the proposed scheme yields simi liar solutions

which are as good as those obtained with the QUICK scheme, but without exhibiting the

physically unrealistic overshoots and undershoots.

1. Introduction
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Development of an efficient convection scheme

which would simultaneously possess accuracy,
stability, boundedness and algorithm simplicity

has been one of the major tasks for the
computational fluid dynamicists over the last two
decades. Several different convection schemes

have been proposed in the past, but there exists a
conflicting issue of accuracy and boundedness
among the schemes. The classical lower-order

schemes such as the upwind scheme, the hybrid

central/upwind [HYBRID] scheme and the
power-law scheme (Patankar, 1980) are uncondi­
tionally bounded and highly stable but highly

diffusive when the flow direction is skewed rela­
tive to the grid lines. Considerable efforts have

been made toward the development of the im­

proved differencing schemes, mainly in two direc­
tions. One is raising the order of the scheme and

the other is taking into account the multidimen­
sional nature of flow. The QUICK (Quardratic
Upstream Interpolation for Convective

Kinematics) scheme (Leonard, 1979) and the
second-order upwind scheme (Warming and
Beam, 1976) belong to the former approach and

Finite Volume Method, Convection Scheme, Higher Order Bounded Scheme.

the skew-upwind scheme (Raithby, 1976) the

latter. These schemes have been successful in
increasing the accuracy of the solution, but all

sutTer from the boundedness problem, resulting in
an oscillatory solution behaviour in regions of
steep gradient, which can lead to the numerical

instability.
Recently Gaskell and Lau(l988) developed a

higher-order bounded scheme named SMART
(Sharp and Monotonic Algorithm for Realistic
Transport) employing a composite approach in

which the high resolution schemes are combined
with the lower-order bounded schemes. Leonar­

d( 1988) also proposed a similiar bounded scheme
of third-order accuracy named SHARP(Simple

High-Accuracy Resolution Program). These two
schemes have resolved aforementioned bounded­

ness problem without much deteriorating the
accuracy of the higher-order scheme. However,

numerical experiments (Zhu, 1992) have shown

that these schemes need an underrelaxation treat­
ment at each of the control volume cell faces in

order to overcome the oscillatory convergence
behaviours. This defficiency leads to the increase
of the computer storage requirement, which may

pose a practical constraint to their use in the
complex three-dimensional turbulent flow calcu­
lations.

Subsequent studies by Zhu and Rodi (1991),
Zhu( 1991 ) and, Shin and Choi(l992) have

proposed bounded convection schemes which are
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rPw= U;;;rPw+ U;;,rPP (6)

where U;;; and U;;, are the indicators of the local
velocity direction such that

j=x.y"-x"y. (3)

In these equations, P is the density of fluid, r¢
is the diffusion coefficient of the varible rP, (u, v)

are the Cartesian velocity components in (x, y)

directions and S¢ denotes the source term of the

variable rP'

F'w=(pU)wrPw-(-1Dft(q\p-rPw) (5)

The evaluation of rPw plays a key role in deter­
mining the accuracy and the stability of numerical

solutions. For example, the rPw is evaluated as

fol1ows when one uses the first-order upwind
scheme.

Incorporation of Eq. (6) and Eq. (5) and similiar

expressions for the other cel1 faces leads to follow­
ing general difference equation.

AprPp = AErPE + AwrPw +ANrP'I
+ AsrPs+ b¢ (8)

The details of implementatioin of the higher­
order bounded schemes wil1 be outlined in the
fol1owing chapter.

(7)
U;;;=O.5(l+[ Uw I/Uw),
U;;, =1- U;;, (Uw*O)

2.2 Discretization of transport equations
In the finite volume approach, the general

transport equation, Eq. (I), is integrated over a
control volume shown in Fig. I. The resulting

equation can be written as follow;

Fe - Fw +Fn - Fs = S¢,d V + S$ (4)

where F represents the total flux of rP across the
cell face and S$ is the sum of the nonorthogonal

diffusion terms. The total flux at the west face, for
example, can be written as follows with the diffu­
sion term approximated by the central differenc­
ing scheme.

U=bfu+biv, V=bru+biv (2)

:t Mathematical Formulation

a~'(P[JrP)+-rfr; (p VrP)

=, a~ [1(Df ~~ +Di~~ )]

+ a~ [ I) (Dr ~~ +Di-~~)] + jS ¢ (1 )

free of oscillatory convergence behaviours by

choosing simple characteristics in the normalized
variable diagram, such as a piecewise-linear pro­

file (SOUCUP: Second-Order Upwind-Central

differencing-first-order UPwind), a parabolic pro­

file (HLPA : Hybrid Linear/Parabolic Approxi­

mation) and a cubic profile (SMARTER:

SMART Efficiently Revised). These schemes are
very simple to implement and computationally
cost effective.

In the present study a high resolution and

bounded convection scheme is proposed for the

simulation of steady incompressible flows with

finite volume method. The scheme employs a
combination of piecewise linear characteristics in
the normalized variable diagram. The scheme is
formulated on a nonuniform, nonorthogonal grid

so that it can be applicable to the practical engi­
neering flow calculations. The performance of the

scheme is tested through applications to the two­
dimensional and three-dimensional test problems.

The computed results are compared with the
available benchmark solutions and experimental

data. The results by the HYBRID, QUICK and
SOUCUP schemes are also included for a better

comparision with the existing popular schemes.

2.1 Governing equations
The conservation form of transport equation

for a general dependent variable rP in a general­
ized coordinate system(~, r;) can be written as
follows:

where

and

bf=y", bi=-x", br=-y., bi=x.
Df=x~+y~, Di=xi+ yi
Di=D'f= - (x.x" +Y.Y")

3. Higher-Order Bounded Schemes

The current higher-order bounded schemes are

based on the variable normalization by Leconar-
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Fig. 1 A typical control volume

(9)

(10)

(II)

Using above upwind biased normalized variable,

the following four schemes can be written as
follows;

Central Difference Scheme ;

¢,w=[ (1- C2) ¢,w+ C2] U:,
+[C2¢,P+ (1- C2)] u,;;

d( 1988) and the convection boundedness criterion
by Gaskell and Lau(l988). Consider, without loss
of generality, the west face of control volume. We
introduce a normalized variable such that

where the subscripts U and D denote the up­

stream and the downstream locations. Eq. (9) can
be rewritten in terms of nodal point values;

Legend

(iv) upwind

(ii) QUICK

(i) central differencing

(iii) second order upwind

1.0

$w
Fig. 2 The normalized variable diagram for various

well known schemes

1.5

(12)

( 14)

First-order Upwind Scheme:

¢,w=¢,wU:'+¢,pU';;

Second-Order Upwind Scheme:

¢,w=(1+C)¢,wU:'+(1+C3)¢,PU,;; (13)

QUICK Scheme:

¢,w=[ (I +C) (I - C2) ¢'w

+C2(1 c2;;g) )JU:'
+ [ C2(1 + C3 ) ¢,p + (I - C2)

( 1-~3-)JU';;1- C2+ C3

where

(15)

are the geometric interpolation factors definded in
terms of the size of control volume cell. For

example, LlXp is the size of control volume
around the calculation point P and is defined as
(see Fig. I)

L1Xp = wP + Pe (16)

The normalized diagrams for these well known

schemes( Uw>O) are shown in Fig. 2.
Gaskell and Lau (1988) formulated following

convection boundedness criterion. Define a con­
tinuous increasing function or union of piecewise

continuous increasing function F relating the
modelled normalized face value ¢'w to the normal­

ized upstream nodal value ¢,W (Uw>0), that is ¢,W
=F(¢,w). Then a finite difference approximation
to ¢,W is bounded if

i) for O~¢,w~1, F is bounded below by the

function ¢,W = ¢, wand above by unity and passes
through the points (0, 0) and (1, I);

ii) for ¢'w<O, ¢,w>1, F is equal to ¢,W.
The convection boundedness criterion is a neces-
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/

Following above criteria by Gaskell and Lau
(1988) and by Leonard (1988), one may choose

several bounded characteristics in the normalized

variable diagram whose order of accuracy is

determined by the shape of the characteristics.
Followings are two simple possibilites which
ensure the second or third-order accuracy.

The SOUCUP scheme
The SOUCUP scheme (Zhu and Rodi, 1991)

employs union of piecewise linear characteristics
passing through the points, 0, Q and P in the

normalized variable diagram.

Fig. 3 Diagrammatic representation of the convec­
tion boundedness criterion

¢w=Ow+ bw¢c
cw+dw¢c

¢c

O~¢C~XQ

XQ~ ¢c~l
otherwise (18)

¢c = ¢wV;:; +¢pV;;' (20)

The SOUCUP scheme is a composite of second­
order upwind, central differencing and first-order

upwind scheme. We see that the SOUCUP scheme
is second-order accurate according to the criterion

by Leonard(l988).

The COPLA scheme
The order of accuracy of the scheme may be

increased to the third-order if one introduces a

characteristic curve in the normalized variable
diagram whose slope at the interesction point Q is

the same as that of the third-order accurate
QUICK scheme. Such a scheme is proposed in the

present study using following characteristics III

the normalized variable diagram.

where

where

(19)

0~¢c~O.5XQ

0.5XQ~ ¢c~ 1.5XQ

1.5XQ~ ¢c ~1
otherwise (21)

Ow=O
bw = YQ / X Q

C w = (YQ- X Q) / (1- X Q)
dw = (1- YQ ) / (1- X Q )

¢w 0= Ow + bw¢c
cw+dw¢c
ew+!w¢c

¢c

and

sary and sufficient condition for achieving

computed boundedness if only three neighbour­

ing nodal values are used to approximate the face
values. The diagrammatic representation of the
convection boundedness criterion is shown in
Fig. 3.

According to Leonard (1988), for any (in gen­
eral nonlinear) characteristics in the normalized
variable diagram (Fig. 2),

i) passing through Q is necessary and sufficient
for second-order accuracy

ii) passing through Q with a slope of O. 75(for a
uniform grid) is necessary and sufficient for
third-order accuracy.

The horizontal and vertical coordinates of point
Q in the normalized variable diagram and the

slope of the characteristics at the point Q for
preserving the third-order accuracy for a
nonuniform grid can be obtained by a simple
algebra Eqs. (II) - (14).

X Cz T T+ + 1- Cz T T­

Q Ct + C2 uw 1- Cz+ C3 UW

17= C2 (1 + CIl TT+
LQ C1+Cz uw

+ (1-Cz) (1+C3 ) V-
l-Cz+C3 w

SQ= (1 + Ct) (1- Cz) V;:;
+ Cz(1 + C3 ) V;;, (17)

For a uniform grid, X Q=0.5, YQ=0.75 and

SQ=O.75.



244 Seok Ki Choi, Ho Yun Nam and Mann Cho

bw = (2 YQ- SQXQ) / X Q
Cw= YQ-SQXQ
dw=SQ

C w = (3XQ-2 YQ~SQXQ)/ (3XQ-2)
fw= (2 YQ+ SQXQ-2) / (3XQ-2) (22)

The present COPLA (COmbination of Piecewise
Linear Approximation) scheme employs a com­
posite of piecewise linear characteristics in which

the QUICK scheme is employed in a range of

O. 5XQ~ ¢c ~ 1. 5XQ• The scheme is simi liar to
the SMART scheme (Gaskell and Lau, 1988), but

is free of convergence oscillation. The normalized
variable diagrams for the SOUCUP scheme and
the COPLA scheme are given in Fig. 4.

The implementation of the higher-order bounded
schemes are quite simple. A part of Eq. (18) can

be expressed in terms of the un normalized vari­
able.

¢w={ ¢w+ (¢p - ¢ww)[a;;,+ (b~ ~ 1)

( ¢w= ¢ww)} U:;;
¢p ¢ww

+{¢p+ (¢w- ¢E)[a~+ (b~~1)

(::=~: )}U:;; (23)

Given the switch factors,

for Uw>O,

aC:=l if I ¢p-2¢w+¢ww 1<1 ¢p~¢ww I
aC:=O otherwise (24)

for Uw<O,

p

Fig. 4 The normalized variable diagram for
SOUCUP and COPLA bounded schemes

a~=l if I¢w-2¢P+¢E 1< ¢W-¢E 1
a~ = 0 otherwise (25)

the unnormalized form of Eq. (23) can be rewrit­

ten as

(26)

where

d¢w= U;aC: (¢p - ¢ww) [ a;;'+ (b~-1)

(~:=::: )]+ U:;;a~(¢W-¢E)

[a~+(b~~1)(::=~:)] (27)

After the evaluation of the additional term, the

implementation of this scheme is the same as that

of the first-order upwind scheme. It should be
noted that the constants are switched according to
the value of ¢c at the same cell face and for the
same flow direction. In the present study the
additional terms are treated in a deferred correc­

tion way proposed by Khosla and Rubin(l974).

4. Applications to Text Problems

The higher-order bounded schemes described

in the previous chapter are implemented in a
general purpose computer code designed to solve

fluid flow and heat transfer in complex geome­

tries. The computer code uses a nonstaggered grid

arrangement and the SIMPLE (Patankar, 1980)
algorithm for pressure-velocity coupling. The

momentum interpolation practice by Rhie and
Chow (1983) is employed for calculating the

cell-face mass fluxes to avoid the pressure osilla­

tion.
The test problems include; (I) pure convection

of a scalar variable in two different situations, (2)

laminar flow in a lid-driven cavity with and
without inclination, (3) laminar flow in a square
duct of 90-degree bend. The computed results are
compared with the analytic solution, the available

experimental data and other computed results
reported in the literature.

4.1 Pure convection of a scalar variable
In what follows, we present the results of two

linear problems involving purely convective trans-



A High Resolution and Bounded Convection Scheme 245

port of scalar tracers containing discontinuties by

prescribed velocity fields. They are; (I) pure

convection of a scalar step by a uniform velocity

field, (2) pure convection of a box-shaped scalar

step by a uniform velocity field. These simple yet

stringent test cases were extensively used in the

literature to examine the performance of the con­

vection schemes.

The flow configuration for Case-I is shown in

Fig. 5. Calculations are performed for two differ­

ent flow angles, 8=45° and 8=26.6°, employing

22*22 uniform grids. Fig. 6 shows the predicted

profih:s along the centerline by different convec­

tion schemes. It can be seen that the HYBRID

scheme results in very diffusive profiles at both

angles. Both accuracy and boundedness are

achieved by the bounded schemes. The sharp

gradient is fairly well resolved without introdcu­

ing the supurious overshoots and undershoots.

We can observe that the saucup scheme is

relatively more diffusive than the CaPlA

scheme. The QUICK scheme also fairly well

resolves the steep gradient, but exhibits oscillator­

y behaviours. This oscillatory solution behaviour

is a little sensitive to the orientation of the flow

field. The magnitude of undershoot is more pro­

nounced at a smaller flow angleUJ=26.6°).

As a second test problem of pure convection

(Case··2), we consider a box-shaped profile shown

in Fig. 7, which is generated by imposing a step

profile along the bottom and left-hand walls of

the square solution domain. Calculations are

performed with two different meshes, 22*22 and

42*42. The predicted profiles along the vertical

centerline (x=O.5, O~y~l) are shown in Fig. 8.

We can observe that the solutions by the
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Fig. 5 Case-l Pure convection of a scalar step by a
uniform velocity field
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scalar step by a uniform velocIty field
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Fig.8 ¢-profile along the centerline

HYBRID scheme are very diffusive, even when

the grids are increased by a facotor of two. The

QUICK scheme results in severe overshoots when

the grid is coarse (22*22). but shows relatively

low undershoots. The bounded schemes fairly

well resolve the steep gradient on either side of

the peaked profile, The SOUCUP scheme is more

diffusive than the COPLA scheme again. but is

much better than the HYBRID scheme.

4.2 Laminar flow in a lid-driven cavity with
and without inclination

Laminar flow in a lid-driven square cavity,

schematically shown in Fig. 9, is considered as an

example of nonlinear problems which are of

practical interest. Two cases with different incli­

nations (13=90°, 13=45°) are considered to exam­

ine the grid nonorthogonality effect on the solu­

tion behaviours. At present reliable benchmark

solutions are available for both cases. Calcula­

tions are performed for Reynolds number of 1000

(a) ;3=90°

LEGEND

HyBR I 0

QUICK

soucup

COPLA

o B~nch ...o."'k
$0 lu1:; on

(b) ;3=45°

Fig. 10 Centerline u-velocity distributions

employing 42*42 numerical grids. The computed

results are compared with the benchmark solu­

tions by Ghia et al. (1982) (13=90°) and by

Demirdzic et al. (1992) (13=45°).
The computed U-velocity profiles along the

vertical centerline for both cases are presented in

Fig. 10. For these recirculating type flow calcula­

tions, the QUICK scheme results in the most

accarate solution. The results by the HYBRID
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scheme are too diffusive, questioning that this

scheme can be applied to the complex three­

dimensional flow calculations. We can observe

that the CaPlA scheme yields solutions which

are as good as those obtained by the QUICK

scheme. The saucup scheme is again more

diffusive than the CaPlA scheme. The general

solution behaviours among the different convec­

tion s,chemes are not altered with the change of

the grid nonorthogonality.

4.3 Laminar flow in a square duct of 90­
degree bend

laminar flow in a square duct of 90-degree

bend. schematically shown 111 Fig. II, is consid­

ered in the present study as a typical three­

dimensional flow involving a strong secondary

Fig. 11 Laminar flow in a square duct of 90-degree
bend
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motion caused by the centrifugal force and pres­

sure gradient. This particular problem was stud­

ied experimentally by Humphrey et al. (1977).

The Reynolds number based on the hydraulic

diameter and bulk velocity is 790. Only a symmet­

ric half of the solution domain is solved employ­

ing 47*32*17 nonuniform grids.

Fig. 12 shows the predicted streamwise velocity

profiles at the 90-degree and 60-degree planes

together with the measured data. We note that the

HYBRID scheme consistently results in diffusive

solutions. Especially it underpredicts the peaked

velocity profiles. The QUICK and COPlA

schemes result in nearly the same solutions, while

the SOUCUP scheme produces slightly more

diffusive solutions than the QUICK or COPlA

schemes.

Fig. I3 shows the vector plots of the predicted

secondary flow at the 90-degree plane. The

QUICK, COPlA and SOUCUP schemes result

in nearly identical secondary flow features. The

HYBRID scheme produces a slightly different

result, especially the secondary motion near the

symmetry line and the strength and the location of

the primary vortex.

In order to investigate the effect of grid refine­

ment on the solution, numerical experiments have

been performed employing three different numeri­

cal grids (37*22*12,47*32*17,62*42*22). Fig. 14

shows their results at the 90-degree symmetry

plane. The HYBRID solution is not grid indepen­

dent and changes gradually as the grid is refined.

The solutions by the higher-order schemes nearly

reach the grid-independent solution. We can

notice that the higher-order schemes well predict

the p'~ak velocity profiles. It is of interest to see

that the coarsest QUICK solution is better than

the finest HYBRID solution.

5. Conclusions

A high-resolution and bounded convection

scheme which employs piecewise linear character­

istics in the normalized variable diagram is

proposed and tested through applications to two

linear pure convection problems, and two and

three-dimensional flow problems. The results of

numerical experiments show that the proposed

scheme resolves the boundedness problem retain­

ing the accuracy of higher-order scheme. The

scheme is simple to implement, stable and is free

of convergence oscillation. All these desired fea­

tures make the present scheme a good alternative

to many existing schemes for the calculation of

complex three-dimensional flow problems.
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